您好、欢迎来到现金彩票网!
当前位置:红彩会 > 分类器 >

OpenCV中SVM的参数具体怎么设置哪位大侠能详细讲解一下?

发布时间:2019-07-03 22:59 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  的问题 (及训练数据不可以完全的线性分割)。它是最常被使用的SVM类型。

  CvSVM::NU_SVC - n类似然不完全分类的分类器。参数nu取代了c,其值在区间【0,1】中,nu越大,决策边界越平滑。

  CvSVM::ONE_CLASS - 单分类器,所有的训练数据提取自同一个类里,然後SVM建立了一个分界线以分割该类在特征空间中所占区域和其它类在特征空间中所占区域。

  CvSVM::EPS_SVR - 回归。 训练集中的特征向量和拟合出来的超平面的距离需要小于p。异常值惩罚因子C被采用。

  CvSVM::LINEAR - 表示不需要进行映射,没有任何向映射至高维空间,线性区分(或回归)在原始特征空间中被完成,这是最快的选择。 d(x,y) = x?y == (x,y)

  class_weights: – C_SVC中的可选权重,赋给指定的类,乘以C以后变成 class_weight_si * C。所以这些权重影响不同类别的错误分类惩罚项。权重越大,某一类别的误分类数据的惩罚项就越大。

  term_crit: – SVM的迭代训练过程的中止条件,解决部分受约束二次最优问题。您可以指定的公差和/或最大迭代次数。

http://m3-ctech.com/fenleiqi/556.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有