您好、欢迎来到现金彩票网!
当前位置:红彩会 > 分类器 >

如何利用OpenCV自带的级联分类器训练程序训练分类器

发布时间:2019-07-03 22:59 来源:未知 编辑:admin

  长期从事计算机组装,维护,网络组建及管理。对计算机硬件、操作系统安装、典型网络设备具有详细认知。网上提供的级联分类器训练都是基于opencv_haartraining。照着上面的步骤成功训练出了xml,但是用于识别的过程中,识别率很低。改换几次样本后,检测效果还是一般。想想估计是自haar特征不能很好区分,所以想通过opencv_traincascade训练下Lbp。将经验写下来,供自己以后回顾和其它人参考。

  准备好正负样本图片,正样本就是含有目标的图片,负样本就是不还有目标的图片,建好文件夹,如图所示。其中正样本图片最好是裁剪成同一尺寸,我这里是建成30*30,便于后期的说明文件的建立。图片的编辑我使用的是美图看看,批量编辑工具,可以批量将图片改成同一尺寸。

  建立正负样本说明文件,在cmd下进入pos文件夹目录里,输入 dir /b pos.txt,用editplus打开该文件,删除最后一行,最后将名字归一化如下所示:同样的方法进入neg文件夹内,用同样的方法建立描述文件neg.txt,用editplus打开该文件,只需删掉最后一行

  其中的-vec是指定后面输出vec文件的文件名,-info指定正样本描述文件,-bg指定负样本描述文件,-w和-h分别指正样本的宽和高,-num表示正样本的个数。执行完该命令后就会在当前目录下生产一个pos.vec文件了。

http://m3-ctech.com/fenleiqi/554.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有