您好、欢迎来到现金彩票网!
当前位置:红彩会 > 分类器 >

MobileNet教程:用TensorFlow搭建在手机上运行的图像分类器

发布时间:2019-05-23 09:50 来源:未知 编辑:admin

  原标题:MobileNet教程:用TensorFlow搭建在手机上运行的图像分类器

  在移动端本地运行神经网络成了明显的趋势,Google还为此推出了MobileNet框架。

  Coastline是一家用深度学习来监测行车情况、防止车祸的公司。以下是Matt Harvey的教程:

  作为卷积神经网络中的新成员,MobileNet有着很多令人惊艳的表现,今天我们就用数据集训练一个试试。

  目前,很多移动端上的深度学习任务都是在云端完成的。当你想要让手机识别一张图片,程序会先把这张图片通过网络发送到远程服务器上进行分类,随后再将结果发送回手机上。

  随着手机计算能力的迅猛增加,加上SqueezeNet和MobileNet等架构让计算机视觉所需要的网络复杂度快速下降,深度学习计算很快就能完全在设备本地完成。

  移动设备本地的深度学习,除了能在没有网络连接的情况下正常运行之外,另一个长处是节省时间,比如说一个车辆安全应用,对反应速度要求非常高,把图片传送到云端处理显然是不现实的。

  MobileNet是由Google的研究者们设计的一类卷积神经网络。它们在手机上运行,计算消耗小、运行速度快,因此很适合在移动端上做应用。

  MobileNet和传统的CNN在结构上的差别主要是,传统CNN中在批规范化和ReLU(线性整流函数)前边,是一个3×3卷积层,而MobileNet将卷积过程分为一个3×3深度方向的卷积和一个1×1点对点的卷积。如果你想了解个中细节和缘由的话,我强烈建议你读一下他们的论文。

  那么MobileNet的短板是什么呢?准确性。跟我们熟悉的那些大型、消耗巨大资源的神经网络相比,MobileNet的准确性不如前者高。但是MobileNet的长处是能够在功耗和性能之间寻求良好的平衡点。

  Google开源了MobileNet,并随之开放了16个ImageNet checkpoint,每一个对应一种不同的参数结构。这为我们训练自己的小又快的图像分类器提供了一个良好的开端。

  我们今天的挑战是搭建一个能够识别道路和非道路图片的分类器。这就像《硅谷》里面的“hot dog, not hot dog”应用,把热狗改成了道路。

  为什么选择道路呢?因为在Coastline,我们正在基于计算机视觉开发用于汽车安全的移动应用。跟所有涉及视觉的app一样,用户隐私是非常需要考虑的一点。所以当用户打开我们的app时,系统会首先检查它看到的是否是道路。如果不是的话,那么它就会关闭摄像头。我们希望这个过程能够在尽可能快速、只占用少量资源的情况下完成。

  为了解决这个问题,我们需要先为它创建数据集。我们的目标是收集10,000张图片,道路和非道路的图片大概各占50%。

  从网上选取3000张不那么明显的非道路图片,以防分类器学会的是区分“天空、非天空”;

  从网上选取1000张不那么明显的道路图片,以防分类器把挡风玻璃上的倒影等特征错认为道路特征。

  我们将会把图片放进“道路”或“非道路”文件夹,这就是我们在重新训练网络之前所需要的图片上的准备工作。

  此外,从网上搜集的图片可以有效地增加你的数据集的多样性,但这样做也有一个缺点,网站上图片的标签往往有些混乱。比如说,通过搜索“道路风景(road landscape)”所得到的图片可能是在美美的自然风光背景下郑重有条通向前方的道路:

  为解决这个问题,我们可以挨个浏览每张图片然后手动进行标注,但如果是这样那我们还要Deep learning干嘛呢?返回搜狐,查看更多

http://m3-ctech.com/fenleiqi/302.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有